游客
题文

我们用部分自然数构造如下的数表:用aij(i≥j)表示第i行第j个数(i、j为正整数),使ail=aii="i" ;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第n(n为正整数)行中各数之和为bn
(1)试写出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推测bn+1和bn的关系(无需证明);
(2)证明数列{bn+2}是等比数列,并求数列{bn}的通项公式bn
(3)数列{ bn}中是否存在不同的三项bp,bq,br(p,q,r为正整数)恰好成等差数列?若存在求出P,q,r的关系;若不存在,请说明理由.

 

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题共13分)
已知每项均是正整数的数列,其中等于的项有
.
(Ⅰ)设数列,求
(Ⅱ)若数列满足,求函数的最小值.

(本小题共14分)
已知椭圆经过点其离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于AB两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.

(本小题共13分)
已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在)上存在一点,使得成立,求的取值范围

(本小题共13分)
某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(Ⅰ) 随机选取1件产品,求能够通过检测的概率;
(Ⅱ)随机选取3件产品,其中一等品的件数记为,求的分布列;
(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.

(本小题共14分)
在如图的多面体中,⊥平面,
中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号