已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,;
(Ⅱ)对于n≥6,已知,求证
,m=1,1,2…,n;
(Ⅲ)求出满足等式的所有正整数n.
已知a为给定的正实数,m为实数,函数.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
过四面体的底面上任一点O分别作
,
分别是所作直线与侧面交点。
求证:为定值,并求出此定值。
已知函数.
(1)当时,求函数
的单调区间;
(2)当时,不等式
恒成立,求实数
的取值范围.
(3)求证:(其中
, e是自然对数的底数).
已知数列满足:
,
(1)求、
;
(2)猜想的通项公式,并用数学归纳法证明.
(3)求证: (
)