已知菱形 A B C D 的顶点 A , C 在椭圆 x 2 + 3 y 2 = 4 上,对角线 B D 所在直线的斜率为 1 . (Ⅰ)当直线 B D 过点 0 , 1 时,求直线 A C 的方程; (Ⅱ)当 ∠ A B C = 60 ° 时,求菱形 A B C D 面积的最大值.
已知函数,是的一个极值点. (Ⅰ)求的单调递增区间; (Ⅱ)若当时,恒成立,求的取值范围.
如图,四面体ABCD中,O是BD的中点,ΔABD和ΔBCD均为等边三角形,AB ="2" ,AC =. (I)求证:平面BCD; (II)求二面角A-BC- D的大小; (III)求O点到平面ACD的距离.
已知向量a,向量b,若a·b +1 . (I)求函数的解析式和最小正周期; (II) 若,求的最大值和最小值.
已知: (1)若 (2)若的最大值和最小值和为3,求的值.
在直三棱柱中,
(1)求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号