如图,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为1的菱形。侧面PAD是正三角形,其所在侧面垂直底面ABCD,G是AD中点。
(1)求异面直线BG与PC所成的角;
(2)求点G到面PBC的距离;
(3)若E是BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并说明理由。
已知函数
(1)求的最小正周期和最大值;
(2)若为三角形的内角且
,求
的值
一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中摸出2个球.
(1)求摸出的两个球中有1个白球和1个红球的概率;
(2)用表示摸出的两个球中的白球个数,求
的分布列及数学期望.
若的图像关于直线
对称,其中
.
(Ⅰ)求的解析式;
(Ⅱ)已知,求
的增区间;
(Ⅲ)将的图像向左平移
个单位,再将得到的图像的横坐标变为原来的2倍(纵坐标不变)后得到的
的图像;若函数
的图像与
的图像有三个交点,求
的取值范围.
设数列的前
项和为
,且满足
,
,求数列
的通项公式;
已知函数f(x)=在
与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)若对xÎ[-1,2],不等式f(x)<恒成立,求c的取值范围。