已知动点到两个定点
的距离的和等于4.
(1)求动点所在的曲线
的方程;
(2)若点在曲线
上,且
,试求
面积的最大值和最小值.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
⑴求的值;
⑵若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
二次函数的最小值等于4,且
.
(1)求的解析式;
(2)若函数的定义域为
,求
的值域;
(3)若函数的定义域为
,
的值域为
,求
的值.
设:函数
在
内单调递减;
:曲线
与
轴交于不同的两点.
(1)若为真且
为真,求
的取值范围;
(2)若与
中一个为真一个为假,求
的取值范围.
将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:
(1)求两点数之和为5的概率;
(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标
的点
在圆
的内部的概率.
已知函数.(
为常数)
(1)当时,①求
的单调增区间;②试比较
与
的大小;
(2),若对任意给定的
,在
上总存在两个不同的
,使得
成立,求
的取值范围.