甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
已知数列,当
时满足
,
(1)求该数列的通项公式;
(2)令,求数列
的前n项和
.
已知向量,
,函数
.
(1)求函数的解析式;
(2)当时,求
的单调递增区间;
(本小题满分16分)设函数
(1)当时,求函数
的极值;
(2)当时,讨论函数
的单调性.
(3)若对任意及任意
,恒有
成立,求实数
的取值范围.
(本小题满分16分)已知数列的各项都是正数,且对任意
,
(
为常数)。
(1)若,求证:
成等差数列;
(2)若,且
成等差数列,求
的值;
(3)已知(
为常数),是否存在常数
,使得
对任意
都成立?若存在,求
的值;若不存在,请说明理由。
(本小题满分16分)如图,F是椭圆的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为
。已知点C在x轴上,且
三点确定的圆M恰好与直线
相切。
(1)求椭圆的方程;
(2)若过点A的直线与圆M交于P,Q两点,且
,求直线
的方程。