在△ABC中,角A,B,C所对边分别为a,b,c,且.
(Ⅰ)求角A;
(Ⅱ)若m,n
,试求|m
n|的最小值。
(本题满分13分) 如图,是离心率为
的椭圆,
:
(
)的左、右焦点,直线
:
将线段
分成两段,其长度之比为1 :3.设
是
上的两个动点,线段
的中点
在直线
上,线段
的中垂线与
交于
两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以
为直径的圆经过点
,若存在,求出
点坐标,若不存在,请说明理由.
已知是等比数列
的前
项和,且
.
(Ⅰ)求数列的通项公式
;
(Ⅱ)若数列是单调递减数列,求实数
的取值范围.
(本题满分12分) 如图,平面⊥平面
,其中
为矩形,
为梯形,
∥
,
⊥
,
=
=2
=2,
为
中点.
(Ⅰ) 证明;
(Ⅱ) 若二面角的平面角的余弦值为
,求
的长.
设,
,
且
,
(Ⅰ)求的值;
(Ⅱ)设三内角
所对边分别为
且
,求
在
上的值域.
已知半径为6的圆与
轴相切,圆心
在直线
上且在第二象限,直线
过点
.
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆
相交于
两点且
,求直线
的方程.