(本小题满分13分)
正数数列{an}的前n项和为Sn,且2.
(1)试求数列{an}的通项公式;
(2)设bn=,{bn}的前n项和为Tn,求证:Tn<.
(本小题满分12分)若函数y=lg(3-4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2-3×4x的最值及相应的x的值.
(本小题满分12分)
已知函数f(x)=,x∈[1,+∞).
(1)当a=时,判断证明f(x)的单调性并求f(x)的最小值;
(2)(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.
(本小题满分12分)
已知集合A={x|x2-2x-8≤0,x∈R},B={x|x2-(2m-3)x+m2-3m≤0,x∈R,m∈R}.
(1)若A∩B=[2,4],求实数m的值;
(2)设全集为R,若A∁RB,求实数m的取值范围.
选修4-5 不等式选讲
已知函数
(I)试求的值域;
(II)设,若对
,恒有
成立,试求实数a的取值范围。
选修4—4:坐标系与参数方程
在平面直角坐标系中,直线过点
且倾斜角为
,以坐标原点为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
相交于
两点;
(1)若,求直线
的倾斜角
的取值范围;
(2)求弦最短时直线
的参数方程。