如图,四棱锥的底面是正方形,平面.,,是上的点.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.
已知函数. (1)求函数的定义域,并判断的奇偶性; (2)用定义证明函数在上是增函数; (3)如果当时,函数的值域是,求与的值.
已知过点的直线与抛物线交于两点,为坐标原点. (1)若以为直径的圆经过原点,求直线的方程; (2)若线段的中垂线交轴于点,求面积的取值范围.
已知命题:方程有两个不等的负实根,命题:方程无实根.若为真,为假,求实数的取值范围.
过点作直线与双曲线相交于两点、,且为线段的中点,求这条直线的方程.
已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求弦的长度.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号