已知:函数(
是常数)是奇函数,且满足
,
(Ⅰ)求的值;
(Ⅱ)试判断函数在区间
上的单调性并说明理由;
(Ⅲ)试求函数在区间
上的最小值.
养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M,高4M。养路处拟建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来大4M(高不变);二是
高度增加4M(底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些,说明理由.
如图:一个圆锥的底面半径为2,高为6,在其中有一个半径为x的内接圆柱。
(1)试用x表示圆柱的体积;
(2).当x为何值时,圆柱的侧面积最大,最大值是多少。
已知函数(
为实数,
,
).
(1)当函数的图像过点
,且方程
有且只有一个根,求
的表达式;
(2)若当
,
,
,且函数
为偶函数时,试判断
能否大于
?
已知函数
(1)画出函数f(x)在定义域内的图像
(2)用定义证明函数f(x)在(0,+∞)上为增函数
已知函数
(1)求函数的定义域
(2)求函数的值域