养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M,高4M。养路处拟建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来大4M(高不变);二是
高度增加4M(底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些,说明理由.
(本小题共14分)
设函数(
).
(Ⅰ)当时,求
的极值;
(Ⅱ)当时,求
的单调区间.
(本小题共13分)
某学校高一年级开设了五门选修课.为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修
一门课程.假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的.
(Ⅰ)求甲、乙、丙三名学生参加五门选修课的所有选法种数;
(Ⅱ)求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;
(Ⅲ)设随机变量为甲、乙、丙这三名学生参加
课程的人数,求
的分布列与数学期望.
(本小题共14分)
正方体的棱长为
,
是
与
的交点,
是
上一点,且
.(Ⅰ)求证:
平面
;
(Ⅱ)求异面直线与
所成角的余弦值;
(Ⅲ)求直线与平面
所成角的正弦值.
(本小题共12分)
|
如图,在平面直角坐标系中,以
轴为始边作两个锐角
,它们的终边分别与单位圆交于
两点.已知
的横坐标分别为
.
设不等式组,所表示的平面区域
的整点个数为
,则
.