:如图,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E-PAD的体积;
(2)点E为BC的中点时,试判断EF与平面PAC的位置
关系,并说明理由;
(3)证明:无论点E在BC边的何处,都有PE⊥AF.
(本题满分12分)
某风景区有40辆自行车供游客租赁使用,管理这些自行车的费用是每日72元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用
(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
(本题满分12分)
在中,角
所对的边分别为
,且满足
,
.
(1)求的面积;
(2)若,求
的值.
(本题满分12分)
已知集合,
,
.
(1)求,
;
(2)若,求
的取值范围.
(本小题满分14分)
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,
求实数的取值范围;
(3)当时,求证:
.
(本小题满分13分)
已知函数.
(1) 若函数的定义域和值域均为
,求实数
的值;
(2) 若在区间
上是减函数,且对任意的
,
总有,求实数
的取值范围;
(3) 若在
上有零点,求实数
的取值范围.