如图,在△中,
,
,
为
的中点,沿
将△
折起到△
的位置,使得直线
与平面
成
角。
(1)若点到直线
的距离为
,求二面角
的大小;
(2)若,求
边的长。
(本小题满分12分)
为了研究某高校大学新生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图如下图所示,已知后6组的频数从左到右依次是等差数列的
前六项。
(1)试确定视力介于4.9至5.0的抽查学生的人数。
(2)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率
的大
小。
(本小题满分12分)
已知抛物线上有一点
到焦点
的距离为5,
(1)求及
的值。
(2)过焦点的直线
交抛物线于A,B两点,若
,求直线
的方程。
(本小题满分12分)
已知某种产品共有6个,其中有2个不合格产品,质检人员从中随机抽出2个,
(1) 抽取产品中只有一个合格产品的概率是多少?
(2) 检测出不合格产品的概率是多少?
(本小题满分12分)
求与双曲线有公共渐近线,且过点
的双曲线的标准方程。
(本小题满分10分)
甲盒中有红皮、黑皮、白皮笔记本各3本,乙盒中有黄皮、黑皮、白皮笔记本各2本,(除颜色外其它完全相同)从两盒中各取一本,求取出的两本是不同颜色的概率。