(本小题满分10分)一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车乙种肥料的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、硝酸盐66t。已知生产1车皮甲种肥料,产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元。那么分别生产甲、乙两种肥料各多少车皮,能够产生最大利润?最大利润是多少?
已知四边形ABCD是矩形,AB=,BC=
,将△ABC沿着对角线AC折起来得到△AB1C,且顶点B1在平面AB=CD上射影O恰落在边AD上,如图所示.
(1)求证:AB1⊥平面B1CD;
(2)求三棱锥B1﹣ABC的体积VB1﹣ABC.
已知函数f(x)=sin
cos
﹣cos2
+
(1)若x∈[0,],且f(x)=
,求cosx的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c+a,求f(B)的取值范围.
某中学共有学生2000人,各年级男,女生人数如下表:
一年级 |
二年级 |
三年级 |
|
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(2)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
已知数列{bn}是首项为1,公差为2的等差数列,数列{an}的前n项和Sn=nbn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,求数列{cn}的前n项和Tn.
已知函数f(x)=(x+a)2+lnx.
(1)当a=时,求函数f(x)在[1,+∞)上的最小值;
(2)若函数f(x)在[2,+∞)上递增,求实数a的取值范围;
(3)若函数f(x)有两个极值点x1、x2,且x1∈(0,),证明:f(x1)﹣f(x2)>
﹣ln2.