运用旋转矩阵,求直线2x+y-1=0绕原点逆时针旋转45°后所得的直线方程。
已知直三棱柱中,
,点N是
的中点,求二面角
的平面角的大小。
如图1,在多面体ABCD—A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E,F两点,上、下底面矩形的长、宽分别为c,d与a,b,且a>c,b>d,两底面间的距离为h。
(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;
(Ⅱ)证明:EF∥面ABCD;
(Ⅲ)在估测该多面体的体积时,经常运用近似公式V估=S中截面·h来计算.已知它的体积公式是V=(S上底面+4S中截面+S下底面),试判断V估与V的大小关系,并加以证明。
(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)
如图所示的一组图形为某一四棱锥S—ABCD的侧面与底面,
(1)指出各侧棱长;
(2)在(1)的条件下,过A且垂直于SC的平面分别交于SB、SC、SD于E、F、G.
求(1)(2)的条件下,求二面角A—SC—B的大小.
一个几何体的三视图如下图所示,其中主视图与左视图是腰长为6的等腰直角三角形,俯视图是正方形。
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1? 如何组拼?试证明你的结论;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.
(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?
(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,,
,以∠BAC为例。