将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入袋或
袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.
(Ⅰ)求小球落入袋中的概率
;
(Ⅱ)在容器入口处依次放入4个小球,记为落入
袋中小球的个数,试求
的概率和
的数学期望
.
已知函数(
∈R且
),
.
(Ⅰ)若,且函数
的值域为[0, +
),求
的解析式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2 , 2 ]时,是单调函数,求实数k的取值范围;
(Ⅲ)设,
, 且
是偶函数,判断
是否大于零?
已知定义在实数集R上的函数y=满足条件:对于任意实数x、y都有f(x+y)=f(x)+f(y).(1)求f(0);(2) 求证:
是奇函数;(3) 若
时,
,求
在
上的值域.
已知函数
(1)求函数的定义域;
(2)记函数求函数
的值域.
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为,则出厂价相应提高的比例为
,同时预计年销售量增加的比例为
.已知年利润=(出厂价–投入成本)
年销售量.
(1)写出本年度预计的年利润与投入成本增加的比例
的关系式;
(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例应在什么范围内?
设全集为R,集合或
,
.
(1)求,
;
(2)已知,若
,求实数
的取值范围.