设动点到定点
的距离比它到
轴的距离大
.记点
的轨迹为曲线
(1)求点的轨迹方程;
(2)设圆过
,且圆心
在
的轨迹上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
如图,
与
都是边长为2的正三角形,
平面
平面
,
平面
,
.
(1)求点
到平面
的距离;
(2)求平面
与平面
所成二面角的正弦值.
设函数
.
(1)当
时,求
的单调区间;
(2)若
在
上的最大值为
,求
的值.
某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令
表示走出迷宫所需的时间.
(1)求
的分布列;
(2)求
的数学期望.
已知函数
.
(1)当
时,求
在区间
上的取值范围;
(2)当
时,
,求
的值.
设函数
=
+
.
(Ⅰ)画出函数
的图像:
(Ⅱ)若不等式
的解集非空,求
的取值范围.