(本小题满分12分)
袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用X表示得分数.
(1)求X的概率分布列;
(2)求X的数学期望EX.
如图,在多面体中,四边形
是菱形,
相交于点
,
,
,平面
平面
,
,点
为
的中点.
(1)求证:直线平面
;
(2)求证:直线平面
.
在平面直角坐标系中,角
的终边经过点
.
(1)求的值;
(2)若关于
轴的对称点为
,求
的值.
已知数列中
.
(1)是否存在实数,使数列
是等比数列?若存在,求
的值;若不存在,请说明理由;
(2)若是数列
的前
项和,求满足
的所有正整数
.
已知函数,其中
为自然对数底数.
(1)当时,求函数
在点
处的切线方程;
(2)讨论函数的单调性,并写出相应的单调区间;
(3)已知,若函数
对任意
都成立,求
的最大值.
如图,已知椭圆,点B是其下顶点,过点B的直线交椭圆C于另一点A(A点在
轴下方),且线段AB的中点E在直线
上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A、B的动点,且直线AP,BP分别交直线于点M、N,证明:OM·ON为定值.