已知A.B是椭圆上两点,O是坐标原点,定点
,向量
.
在向量
方向上的投影分别是m.n ,且
7mn ,动点P满足
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过点E的直线l与C交于两个不同的点M.N,求的取值范围。
已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是,
,
,若
且
,
试判断△ABC的形状.
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
已知函数在点
处取得极小值-4,使其导数
的
的取值范围为
,求:
(1)的解析式;
(2),求
的最大值;
已知:A、B、C是的内角,
分别是其对边长,向量
,
,
.
(Ⅰ)求角A的大小;
(Ⅱ)若求
的长.
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。