如图,椭圆的左右焦点分别为
,
是椭圆右准线上的两个动点,且
=0.
(1)设圆是以
为直径的圆,试判断原点
与圆
的位置关系
(2)设椭圆的离心率为,
的最小值为
,求椭圆的方程
如图:在棱长为1的正方体—
中.
点M是棱的中点,点
是
的中点.
(1)求证:垂直于平面
;
(2)求平面与平面
所成二面角的平面角(锐角)
的余弦值.
设
(1)求的最大值及
的值;
(2)求的单调区间;
(3)若,求
的值.
从5名男生和4名女生选出4人去参加辩论比赛.
(1)求选出的4人中有1名女生的概率;
(2)设X为选出的4人中的女生人数,求X的分布列及数学期望.
(本小题满分14分)
已知数列
(1)计算x2,x3,x4的值;
(2)试比较xn与2的大小关系;
(3)设,Sn为数列{an}前n项和,求证:当
.
(本小题满分14分)
已知函数
(Ⅰ)若上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数对于区间D上的任意两个值x1、x2总有以下不等式
成立,则称函数
为区间D上的“凹函数”.试判断当
是否为“凹函数”,并对你的判断加以证明.