(本小题满分10分)选修4—1:几何证明选讲
如图,已知点在⊙
直径的延长线上,
切⊙
于
点,
是
的平分线,交
于
点,交
于
点.
(Ⅰ)求的度数;
(Ⅱ)若,求
.
(本小题满分12分)设函数.
(1)若函数在
处有极值,求函数
的最大值;
(2)①是否存在实数,使得关于
的不等式
在
上恒成立?若存在,求出
的取值范围;若不存在,说明理由;
②证明:不等式
(本小题满分12分)已知椭圆的左,右顶点分别为
,圆
上有一动点
,点
在
轴的上方,
,直线
交椭圆
于点
,连接
.
(1)若,求△
的面积
;
(2)设直线的斜率存在且分别为
,若
,求
的取值范围.
(本小题满分12分)如图,在四棱锥中,平面
平面
,
,在锐角
中
,并且
,
.
(1)点是
上的一点,证明:平面
平面
;
(2)若与平面
成角
,当面
平面
时,求点
到平面
的距离.
(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.
(1)求的值;
(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取
天的数值,其中达到“特优等级”的天数为
,求
的分布列和数学期望.