某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为,若中奖,商场返回顾客现金100元.某顾客现购买价格为2300的台式电脑一台,得到奖券4张.
(Ⅰ)设该顾客抽奖后中奖的抽奖券张数为,求
的分布列;
(Ⅱ)设该顾客购买台式电脑的实际支出为(元),用
表示
,并求
的数学期望.
已知命题”
”同时为假命题,求x的值。
已知命题p:正方形的两条对角线互相垂直;命题q:正方形的两条对角线相等,写出命题 “p或q”“p且q”“非p”,并指出真假.
分别指出由下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题的真假:
(1)p:方程x2+1=0有实数根;q:方程x2-1=0的两根相等.
(2)p:等腰三角形两底角相等;q:等腰三角形为锐角三角形.
指出下列复合命题的形式,:
(1)x=2和x=3是方程x2-5x+6=0的根;
(2)x2-3x+2<0,则1<x<2;
(3)x+1≥x-3;
(4)1既不是质数,也不是合数;
(12分)指出下列数学式子的确切含义:
(1)“a≥b”; (2)“a=±b”; (3)“a≠±b”.