(本题满分16分,第(1)小题8分,第(2)小题8分)
己知双曲线的中心在原点,右顶点为(1,0),点
、Q在双曲线的右支上,点
(
,0)到直线
的距离为1.
(1)若直线的斜率为
且有
,求实数
的取值范围;
(2)当时,
的内心恰好是点
,求此双曲线的方程.
若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列
,满足
.
(Ⅰ)证明数列是等比数列;
(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形
数表,当时,求第
行各数的和;
(Ⅲ)对于(Ⅱ)中的数列,证明:
.
(本小题满分13分)
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
在第一象限相切于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求直线的方程以及点
的坐标;
(Ⅲ)是否存在过点的直线
与椭圆
相交于不同的两点
,满足
?若存在,求直线
的方程;若不存在,请说明理由.
(本小题满分13分)
已知函数,
.
(Ⅰ)求函数的导函数
;
(Ⅱ)当时,若函数
是
上的增函数,求
的最小值;
(Ⅲ)当,
时,函数
在
上存在单调递增区间,求
的取值范围.
(本小题满分14分)
如图,在三棱柱中,每个侧面均为正方形,
为底边
的中点,
为侧棱
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.
(本小题满分13分)
在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是,
.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.
(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;
(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.