已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
⑴求动圆圆心P的轨迹方程;
⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.
(本小题满分14分)
执行下面框图(图3)所描述的算法程序,
记输出的一列数依次为,
,…,
,
,
.
(注:框图中的赋值符号“”也可以写成“
”或“:
”)
(1)若输入,直接写出输出结果;
(2)若输入,证明数列
是等差数列,并求出数列
的通项公式.
(本小题满分14分)
如图所示,四棱锥中,底面
为正方形,
平面
,
,
,
,
分别为
、
、
的中点.
(1)求证:;
(2)求平面EFG与平面ABCD所成锐二面角的余弦值.
(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):男女
15 7 7 8 9 9 9
9 816 0 0 1 2 4 5 8 9
8 6 5 017 2 5 6
7 4 2 118 0
1 019
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?
(本小题满分12分)
已知函数,
.
(1)求的最大值;
(2)设△中,角
、
的对边分别为
、
,若
且
,
求角的大小.
已知函数.
(1)当a = 2时,求f (x) 的最小值;
(2)若f (x)在[1,e]上为单调减函数,求实数a的取值范围.