在复数范围内解方程(i为虚数单位).
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
已知是定义在(0,+∞)上的增函数,且满足
.
(1)求的值; (2)求不等式
的解集.
已知集合A=,B=
,
(1)当时,求
(2)若:
,
:
,且
是
的必要不充分条件,求实数
的取值范围。
甲,乙两人进行射击比赛,每人射击次,他们命中的环数如下表:
甲 |
5 |
8 |
7 |
9 |
10 |
6 |
乙 |
6 |
7 |
4 |
10 |
9 |
9 |
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;
(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过的概率.
在中,角
,
,
所对的边分别为
,
,
,向量
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,
,求
的值.