在直角坐标平面中,△ABC的两个顶点为 A(0,-1),B(0, 1)平面内两点G、M同时满足① , ②
=
=
③
∥
(1)求顶点C的轨迹E的方程
(2)设P、Q、R、N都在曲线E上 ,定点F的坐标为(, 0) ,已知
∥
,
∥
且
·
= 0.求四边形PRQN面积S的最大值和最小值.
(本小题共13分)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;
(Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
(本小题共13分)已知等差数列的前
项和为
,等比数列
满足
,
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)如果数列为递增数列,求数列
的前
项和
.
(本小题共13分)已知函数(其中
,
R)的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)如果,且
,求
的值.
已知函数
(Ⅰ)当时,求使
成立的
的值;
(Ⅱ)当,求函数
在
上的最大值;
(Ⅲ)对于给定的正数,有一个最大的正数
,使
时,都有
,试求出这个正数
,并求它的取值范围.
已知二次函数满足
,且关于
的方程
的两个实数根分别在区间
、
内.
(1)求实数的取值范围;
(2)若函数在区间
上具有单调性,求实数
的取值范围.