已知数列{a}中,a=2,前n项和为S,且S=.(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值
(本小题满分12分) 已知函数 (1)当时,求函数的单调区间; (2)若存在单调增区间,求的取值范围。
(本小题满分12分) 命题:方程是焦点在轴上的椭圆, 命题:函数在上单调递增, 若为假,为真,求实数的取值范围.
(本小题满分10分) 设命题:;命题:. 若是的必要不充分条件,求实数的取值范围.
已知抛物线方程为, (1)直线过抛物线的焦点,且垂直于轴,与抛物线交于两点,求的长度。 (2)直线过抛物线的焦点,且倾斜角为,直线与抛物线相交于两点,为原点。求△的面积。
为何值时,直线和曲线有两个公共点?有一个公共点?没有公共点?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号