若椭圆
的离心率为
,焦点在
轴上,且长轴长为10,曲线
上的点与椭圆
的两个焦点的距离之差的绝对值等于4.
(1)求椭圆
的标准方程;
(2)求曲线
的方程。
设函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)当
时,是否存在整数
,使不等式
恒成立?若存在,求整数
的值;若不存在,请说明理由.
(Ⅲ)关于
的方程
在
上恰有两个相异实根,求实数
的取值范围.
已知椭圆
的离心率为
,短轴的一个端点到右焦点的距离为
,直线
交椭圆于不同的两点
,
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
,且
,求
的值(
点为坐标原点);
(Ⅲ)若坐标原点
到直线
的距离为
,求
面积的最大值.
如图,在三棱柱
中,每个侧面均为正方形,
为底边
的中点,
为侧棱
的中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
若
,观察下列不等式:
请你猜测
满足的不等式,并用数学归纳法加以证明.
已知椭圆
的离心率为
,短轴的一个端点到右焦点的距离为
,直线
交椭圆于不同的两点
,
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
,且
,求
的值(
点为坐标原点);
(Ⅲ)若坐标原点
到直线
的距离为
,求
面积的最大值.