给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围
数列满足其中 (1)求 (2)是否存在一个实数,使成等差数列?若存在,求出的值,若不存在,说明理由。
已知函数对于任意正实数都有,且时,。 (1)证明 (2)求证:在上为减函数。
设函数, (1)求的单调区间 (2)若为整数,且当时,,求的最大值.
已知函数, (1)若函数在处的切线方程为,求实数,的值; (2)若在其定义域内单调递增,求的取值范围.
在数列中,已知,(. (1)求证:是等差数列; (2)求数列的通项公式及它的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号