已知数列具有性质:①
为正数;②对于任意的正整数
,当
为偶数时,
;当
为奇数时,
(1)若,求数列
的通项公式;
(2)若成等差数列,求
的值;
(3)设,数列
的前
项和为
,求证:
(本题满分12分)已知函数.
(1)求的周期和单调递增区间;
(2)说明的图象可由
的图象经过怎样变化得到.
(本小题满分13分)已知A(0,2,3),B(-2,1,6),C(1,-1,5)
(1)求、
、
;
(2)求以、
为边的平行四边形的面积;
(本小题满分12分)过点(-3,2)的直线与抛物线y2=4x只有一个公共点,求此直线方程。
(本小题满分12分)已知P:“直线x+y-m=0与圆(x-1)2+y2=1相交”,
q:“m2-4m<0”
若p∪q为真命题,p为真命题,求m的取值范围。
(本小题满分12分)甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环),如果甲、乙两人中只有1人入选,计算他们的平均成绩及方差。问入选的最佳人选应是谁?