如图椭圆 (a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆方程.
已知数列满足
,且
,
.
⑴求数列的前三项,
,
;
⑵数列为等差数列,求实数
的值;
⑶求数列的前
项和
已知、
、
分别是
的三个内角
、
、
所对的边
(1)若面积
求
、
的值;
(2)若,且
,试判断
的形状.
如图,在四边形ABCD中,已知AD^CD, AD="10," AB=14,
角BDA=60°, 角BCD=135°求BC的长.
在某海滨城市附近海面有一台风,据测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?
设数列
满足:
,
(1)求证:数列是等比数列(要指出首项与公比),
(2)求数列的通项公式.