已知函数f(x)=
(1)、求f(2)与f(),f(3)与f(
);
(2)、由(1)中求得结果,你能发现f(x) 与f()有什么关系?并证明你的结论;
(3)、求f(1)+f(2)+f(3)+的值.
(本小题满分14分)定义在的奇函数
有极小值为
.
(1)求的解析式;
(2)若曲线有三条不同的切线
,
,
相交于点
,求实数
的取值范围.
(本小题满分14分)已知直线经过椭圆
:
的右焦点和上顶点.
(1)求椭圆的标准方程;
(2)设直线与椭圆
交于
、
,点
关于
轴的对称点
(
与
不重合),则直线
与
轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本小题满分14分)已知正项数列对任意的
,都有
.
(1)求,
的值;
(2)求数列的通项公式
;
(3)设数列的前
项和为
,当
,证明:
.
(本小题满分14分)如图,平面平面
,其中
为正方形,
为直角梯形,
,
,
.
(1)求证:平面
;
(2)求点到平面
的距离.
(本小题满分12分)某校从参加“百科知识”竞赛的学生中,选取40名学生,将他们的成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试的平均分;
(3)若从成绩在的学生中采用分层抽样抽取5人,再从中抽取2人,求抽到的学生中恰好一个成绩在
,一个成绩在
的概率.