如图,在正方体中
①求证:平面
;
②求证:与平面
的交点
是
的重心(三角形三条中线的交点)
![]() |
(本小题满分12分)已知函数.
(1)若为函数
的极值点,求实数
的值;
(2)若时,方程
有实数根,求实数
的取值范围.
(本小题满分12分)中,角
的对边分别为
,已知点
在直线
上.
(1)求角的大小;
(2)若为锐角三角形且满足
,求实数
的最小值。
(本小题满分10分)已知函数,且当
时,
的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的
,再把所得的图象向右平移
个单位,得到函数
的图象,求方程
在区间
上所有根之和.
(本小题满分12分).已知函数(
).
(1)若,求曲线
在点
处的切线方程;
(2)若不等式对任意
恒成立.
(ⅰ)求实数的取值范围;
(ⅱ)试比较与
的大小,并给出证明(
为自然对数的底数,
).
(本小题满分12分)设△ABC三个内角A、B、C所对的边分别为a,b,c.已知C=,acosA=bcosB.
(1)求角B的大小;
(2)如图,在△ABC内取一点P,使得PB=2.过点P分别作直线BA、BC的垂线PM、PN,垂足分别是M、N.设∠PBA=,求PM+PN的最大值及此时
的取值.