已知数列满足对任意的
,都有
,
且.
(1)求,
的值;
(2)求数列的通项公式
;
(3)设数列的前
项和为
,不等式
对任意的正整数
恒成立,求实数
的取值范围.
如图,直线与椭圆
交于
两点,记
的面积为
,
是坐标原点.
(1)当时,求
的最大值;
(2)当时,求直线
的方程.
已知椭圆的长轴长为4,且点
在椭圆上.
(1)求椭圆的方程;
(2)过椭圆右焦点斜率为的直线
交椭圆于
两点,若
,求直线
的方程
已知直线及圆
.
(1)求垂直于直线且与圆
相切的直线
的方程;
(2)过直线上的动点
作圆
的一条切线,设切点为
,求
的最小值.
如图,已知抛物线:
,其上一点
到其焦点
的距离为
,过焦点
的直线
与抛物线
交于
左、右两点.
(1)求抛物线的标准方程;
(2)若,求直线
的方程.
已知椭圆:
的离心率为
,
是椭圆
的左焦点.
(1)求椭圆的方程;
(2)若直线与椭圆
相交于不同的两点
.且线段
的中点
在圆
上,求
的值.