(本题12分)在一次国际比赛中,中国女排与俄罗斯女排以“五局三胜”制进行决赛,根据以往战况,中国女排在每一局中赢的概率都是,已知比赛中,俄罗斯女排先赢了第一局,求:
(1) 中国女排在这种情况下取胜的概率;
(2) 设比赛局数为,求
的分布列及
(均用分数作答).
(本小题满分12分)已知为复数,
和
均为实数,其中
是虚数单位.
(Ⅰ)求复数和
;
(Ⅱ)若在第四象限,求
的范围.
(本小题满分14分)已知椭圆上的点
到左右两焦点
的距离之和为
,离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点的直线
交椭圆于
两点.
(1)若轴上一点
满足
,求直线
斜率
的值;
(2)是否存在这样的直线,使
的最大值为
(其中
为坐标原点)?若存在,求直线
方程;若不存在,说明理由.
(本小题满分13分)已知数列的前
项和
,满足
为常数,且
,且
是
与
的等差中项.
(Ⅰ)求的通项公式;
(Ⅱ)设,求数列
的前
项和
.
(本小题满分12分)如图,已知平面
是正三角形,
.
(Ⅰ)在线段上是否存在一点
,使
平面
?
(Ⅱ)求证:平面平面
;
(Ⅲ)求二面角的余弦值.
(本小题满分12分)已知抛物线的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为
,且
.
(Ⅰ)求此抛物线的方程;
(Ⅱ)过点做直线
交抛物线
于
两点,求证:
.