如图,在三棱锥 中, , , , .
(Ⅰ)求证:
;
(Ⅱ)求二面角
的大小.
如图,是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与点
、
重合的任意一点,已知棱
,
,
.
(1)求证:;
(2)将四面体绕母线
转动一周,求
的三边在旋转过程中所围成的几何体的体积.
设x,y满足约束条件,
(1)画出不等式表示的平面区域,并求该平面区域的面积;
(2)若目标函数z=ax+by(a>0,b>0)的最大值为4,求的最小值.
(1)求圆心在轴上,且与直线
相切于点
的圆的方程;
(2)已知圆过点
,且与圆
关于直线
对称,求圆
的方程.
(1)推导点到直线的距离公式;
(2)已知直线:
和
:
互相平行,求实数
的值.
如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.