(1)求圆心在轴上,且与直线
相切于点
的圆的方程;
(2)已知圆过点
,且与圆
关于直线
对称,求圆
的方程.
已知函数
(Ⅰ)若有两个极值点,求实数
的取值范围;
(Ⅱ)当时,讨论函数
的零点个数.
设数列满足
.
(Ⅰ)求,并由此猜想
的一个通项公式,证明你的结论;
(II)若,不等式
对一切
都成立,求正整数m的最大值。
已知函数.
(I)若,求
在
处的切线方程;
(II)求在区间
上的最小值.
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求
的分布列.
已知,且
展开式的各式系数和为243.
(I)求a的值。
(II)若,求
中含
的系数。