(本小题满分10分)P是椭圆上的点,
是椭圆的左右焦点,设
.求
的最大值与最小值的差.
如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线
对折,使得
,
为
的中点.若P为AC上的点,且满足
。
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
(Ⅲ)求二面角的余弦值.
平面内动点到定点
的距离比它到
轴的距离大
。
(1)求动点的轨迹
的方程;
(2)已知点A(3,2), 求的最小值及此时P点的坐标.
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组
,,第五组
.按上述分组方法得到的频率分布直方图如图所示.
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
命题: “方程
表示双曲线”(
);命题
:
定义域为
,若命题
为真命题,
为假命题,求实数
的取值范围.
已知函数,(
为常数,
为自然对数的底).
(1)令,
,求
和
;
(2)若函数在
时取得极小值,试确定
的取值范围;
(3)在(2)的条件下,设由的极大值构成的函数为
,试判断曲线
只可能与直线
、
(
,
为确定的常数)中的哪一条相切,并说明理由.