(本小题满分12分)在平面直角坐标系xOy中,有一个以为和
焦点、离心率为
的椭圆.设椭圆在第一象限的部分为曲线C, 动点P在C上, C在点P处
的切线与x , y轴的交点分别为A、B,且向量.求:
(1)点M的轨迹方程;
(2)的最小值.
已知圆O:交
轴于A,B两点,曲线C是以
为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知四边形满足
∥
,
,
是
的中点,将
沿着
翻折成
,使面
面
,
为
的中点.
(Ⅰ)求四棱的体积;(Ⅱ)证明:
∥面
;
(Ⅲ)求面与面
所成二面角的余弦值.
已知函数,
=
(
是自然对数的底)
(1)若函数是(1,+∞)上的增函数,求
的取值范围;
(2)若对任意的>0,都有
,求满足条件的最大整数
的值;
(3)证明:,
.
已知椭圆上的动点到焦点距离的最小值为
,以原点为圆心、椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(2,0)的直线与椭圆
相交于
两点,
为椭圆上一点, 且满足
(
为坐标原点),当
时,求实数
的值.
某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润
(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不能超过利润的
%.现有三个奖励模型:
,分析与推导哪个函数模型能符合该公司的要求?并给予证明.(注:
)