已知函数,= (是自然对数的底)(1)若函数是(1,+∞)上的增函数,求的取值范围;(2)若对任意的>0,都有,求满足条件的最大整数的值;(3)证明:,.
已知为实数,函数. (1) 若,求函数在[-,1]上的极大值和极小值; (2)若函数的图象上有与轴平行的切线,求的取值范围.
设函数. (1)求不等式的解集; (2)若不等式的解集是非空的集合,求实数的取值范围.
某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?
已知:,, 求证:.
已知不等式2|x-3|+|x-4|<2a. (Ⅰ)若a=1,求不等式的解集; (Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号