(本小题满分16分)某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天.(Ⅰ)写出n关于x的函数关系式;(Ⅱ)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).
已知数列,满足,,且() (Ⅰ)求数列,的通项公式. (Ⅱ)求数列的前项和.
设各项均为正数的数列的前项和为,满足 且构成等比数列. (Ⅰ)证明:; (Ⅱ)求数列的通项公式; (Ⅲ)证明:对一切正整数,有.
已知为数列{}的前项和,且, (Ⅰ)求数列{}的通项公式; (Ⅱ)若数列满足,,求的通项.
已知等比数列中, (Ⅰ)试求的通项公式; (Ⅱ)若数列满足:,试求的前项和公式.
设,求函数的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号