已知椭圆方程为 斜率为
的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。
(1)求m的取值范围;
(2)求△OPQ面积的取值范围。
已知等比数列为正项递增数列,且
,
,数列
.
(1)求数列的通项公式;
(2),求
.
已知,不等式
的解集为
.
(1)求的值;
(2)若对一切实数
恒成立,求实数
的取值范围.
已知曲线的参数方程是
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)写出的极坐标方程和
的直角坐标方程;
(2)已知点、
的极坐标分别是
、
,直线
与曲线
相交于
、
两点,射线
与曲线
相交于点
,射线
与曲线
相交于点
,求
的值.
如图:是⊙
的直径,
是弧
的中点,
⊥
,垂足为
,
交
于点
.
(1)求证:=
;
(2)若=4,⊙
的半径为6,求
的长.
已知
(1)当时,求
的极大值点;
(2)设函数的图象
与函数
的图象
交于
、
两点,过线段
的中点做
轴的垂线分别交
、
于点
、
,证明:
在点
处的切线与
在点
处的切线不平行.