原子在不停地做热运动,为了能高精度地研究孤立原子的性质,必须使它们几乎静止下来并能在一个很小的空间区域停留一段时间,例如纳米技术中需要移动或修补分子.科学家已发明了一种称为“激光制冷”的技术,原理如下:
在一个真空室内,一束非常准直的Na-23原子束(通过样品在1 000 K高温下蒸发而获得,原子做热运动的速率近似为v0="1" 000 m/s),受一束激光的正面照射,如图15-2-3所示.设原子处在基态,运动方向与激光光子的运动方向相反,选好激光频率使光子能量E等于钠原子第一激发态与基态间能量差,原子就能吸收它而发生跃迁,跃迁后原子的速度为v1,随后该原子发射光子并回到基态.设所发射光子的运动方向与速度v0的方向总是相同的,此时原子的速度为v2,接着重复上述过程,直到原子的速度减小到零.
图15-2-3
(1)吸收与发射光子的总次数为多少?
(2)原子停留在激发态上的时间称为原子在这种状态下的寿命,大小约为10-8 s.忽略每次吸收与发射光子的时间,按上述方式,原子初速度v0减小到零,共需多长时间?该时间内原子共走过的路程为多少?(E=3.36×10-19 J,钠原子的质量m=3.84×10-26 kg,NA=6.0×1023 mol-1,c=3.0×108 m/s)
如图所示是利用“霍尔元件”测量磁场的磁感应强度的示意图.“霍尔元件”是由半导体材料制成的矩形薄片,它的四边各有一条引线.把它放入匀强磁场中,使薄片平面与磁场方向垂直,A.B两引线与直流电源相连,C.D两引线与电压表相连.已知该半导体材料中单位体积内的自由电荷数为n、每个自由电荷的电量为q,元件的A.B两边距离为A.C.D两边距离为B.厚度为d,通过电流表读出元件中通过的电流为I、从电压表读出电压为U.
(1)已知磁场方向向下,C.D两引线哪边的电势较高?
(2)求磁感应强度B的大小.
空间存在着匀强电场和匀强磁场,一个质量为m、电量为-q的质点,在位于东西方向的竖直平面内做半径为R的匀速圆周运动,从南向北看去它是沿逆时针方向旋转的,速度大小为v.试确定电场强度E和磁感强度B的大小和方向.
如图,在直角坐标系xoy平面内,x轴上方有磁感应强度为B、方向垂直xoy平面指向纸里的匀强磁场,x轴下方有场强为E、方向沿y轴负方向的匀强电场,x轴正方向上有一点P到原点O的距离PO=L.一质量为m、电量为e的电子,由y轴负方向上距原点O为y处由静止释放,要使电子进入磁场运动且恰可通过P点(不计重力),则
(1)y应满足的条件是什么?
(2)电子由释放至运动到P点所用的时间t为多大?
如图,在光滑的绝缘平面上方,有垂直纸面向里的匀强磁场,一质量为m、带有电量+q的钢球C静止放于平面上,另一质量为2m、与C球等大的不带电的钢球A,以速度v与C球发生弹性正碰.碰后C球对平面刚好无压力.则此时A球对平面的压力大小为多少?
如图,相距d=10cm水平放置在高h处的两根导电轨道,轨道间接有电源,处于磁感强度B=0.1T、垂直轨道平面向上的匀强磁场中.K断开时,将一根质量m=3g的金属杆放于轨道一边缘处,然后闭合K,金属杆沿水平方向飞出落于地面上,其水平距离s=1.5m.h=5m,则闭合K时通过金属杆的电量为多少?