游客
题文

椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
(1)求椭圆方程;
(2)若,求m的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知椭圆C:+=1(a>b>0)过点(1,),且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若=﹣,求k的值.

已知函数,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

在数列{an}中,已知
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn

已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)若f(α)=,求sin(π﹣4α)的值.

如图所示,PA⊥平面ABCD,四边形ABCD为正方形,且E,F,G,H分别是线段PA、PD、CD、BC的中点.

(1)求证:BC∥平面EFG;
(2)DH⊥平面AEG.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号