已知椭圆的离心率为,F为椭圆在x轴正半轴上的焦点,M、N两点在椭圆C上,且,定点A(-4,0).(1)求证:当时.,;(2)若当时有,求椭圆C的方程;(3)在(2)的条件下,当M、N两点在椭圆C运动时,当 的值为6时, 求出直线MN的方程.
如图,在△ABC中,点D在边BC上,且,用向量表示向量;若,求实数的取值范围。
设的三个内角,向量,且 (1)求角的大小; (2)若的三边长构成公差为4的等差数列,求△ABC的面积。
已知等差数列的前n项和为,。 (1)求的通项; (2)数列为等比数列,,求的前8项和。
已知,,分别求、及的范围。
已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号