已知焦点在轴,顶点在原点的抛物线
经过点P(2,2),以
上一点
为圆心的圆过定点
(0,1),记
为圆
与
轴的两个交点.
(1)求抛物线的方程;
(2)当圆心在抛物线上运动时,试判断
是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记
,
,求
的最大值.
设集合是函数
的定义域,集合
是函数
的值域.
(Ⅰ)求集合;
(Ⅱ)设集合,若集合
,求实数
的取值范围.
已知椭圆:
.
(1)椭圆的短轴端点分别为
(如图),直线
分别与椭圆
交于
两点,其中点
满足
,且
.
①证明直线与
轴交点的位置与
无关;
②若∆面积是∆
面积的5倍,求
的值;
(2)若圆:
.
是过点
的两条互相垂直的直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.求
面积取最大值时直线
的方程.
已知数列,
是其前
项的和,且满足
,对一切
都有
成立,设
.
(1)求;
(2)求证:数列是等比数列;
(3)求使成立的最小正整数
的值.
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、
是过抛物线
焦点
的两条弦,且其焦点
,
,点
为
轴上一点,记
,其中
为锐角.
(1)求抛物线方程;
(2)求证:.
已知向量,
,其中
.函数
在区间
上有最大值为4,设
.
(1)求实数的值;
(2)若不等式在
上恒成立,求实数
的取值范围.