游客
题文

已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆轴的两个交点.
(1)求抛物线的方程;
(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记,求的最大值.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分12分)
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.

(本小题满分12分)
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)

.(本小题满分12分)
如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

(本小题满分12分)
已知公比大于1的等比数列{}满足:++=28,且+2是的等差中项.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若=,求{}的前n项和.

(本小题满分12分)
已知函数的定义域为,且同时满足下列条件:
(1)是奇函数;
(2)在定义域上单调递减;
(3)
的取值范围

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号