若数列满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用可求得
,进而求得
.
根据上述结论求下列问题:
(1)当,
(
)时,求数列
的通项公式;
(2)当,
(
)时,求数列
的通项公式;
(3)当,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
(13分)已知函数图象上一点P(2,
)处的切线方程为
(1)求的值(2)若方程
在
内有两个不等实根,求
的取值范围(其中
为自然对数的底)
(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1和CC1 的中点.
(1)求证:EF∥平面ACD1
(2)求三棱锥E-ACD1的体积与正方体ABCD -A1B1C1D1的体积之比
(12分)某电视台综艺频道主办一种有奖过关游戏,该游戏设有两关,只有过了第一关,才能玩第二关,每关最多玩两次,连续两次失败者被淘汰出局.过关者可获奖金,只过第一关获奖金900元,两关全过获奖金3600元.某同学有幸参与了上述游戏,且该同学每一次过关的概率均为,各次过关与否互不影响.在游戏过程中,该同学不放弃所有机会.
(1)求该同学仅获得900元奖金的概率
(2)若该同学已顺利通过第一关,求他获得3600元奖金的概率
已知向量,
,函数
(1)求函数的最小正周期
|
(2)若时,求
的单调递减区间
(12分) 设数列的前
项和为
,对一切
,点
都在函数
的图象上. (1) 求数列
的通项公式; (2) 将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;(3)设
为数列
的前
项积,若不等式
对一切
都成立,求
的取值范围.