设定义在R的函数,
R. 当
时,
取得极大值
,且函数
的图象关于点
对称.
(I)求函数的表达式;
(II)判断函数的图象上是否存在两点,使得以这两点为切点的切线互相垂直,且切点的横坐标在区间
上,并说明理由;
(III)设
,
(
),求证:
.
某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为115).
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量X,求X的概率分布.
学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=.
(1)求文娱队的人数;
(2)写出ξ的概率分布列.
在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=.
某中学高考数学成绩近似地服从正态分布N(100, 100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)
设展开式中第2项的系数与第4项的系数的比为4:45,试求
项的系数.
设,若展开式中关于
的一次项系数和为11,试问
为何值时,含
项的系数取得最小值.