已知点A,动点
在双曲线
上运动,且
,求点P的轨迹方程.
已知△中,
,
,
平面
,
,
、
分别是
、
上的动点,且
.
(1)求证:不论为何值,总有平面
平面
;
(2)当为何值时,平面
平面
?
已知多面体中, 四边形
为矩形,
,
,平面
平面
,
、
分别为
、
的中点,且
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)设平面将几何体
分成的两个锥体的体积分别为
,
,求
的值.
已知函数.
(1)若在
上存在零点,求实数
的取值范围;
(2)当时,若对任意的
,总存在
使
成立,求实数
的取值范围.
如图,椭圆过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
, M, N是直线x=4上的两个动点,且
·
=0.
(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)当a≤0时,求f(x)的单调区间。