一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是
;从中任意摸出2个球,至少得到1个白球的概率是
。求:
(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率;
(Ⅱ)袋中白球的个数。
若是定义在
上的增函数,且对一切
满足
(1)求
(2)若,解不等式
(本小题7分)已知集合,若(
.求实数
的取值范围.
设函数,其中
.⑴若
的定义域为区间
,求
的最
大值和最小值;⑵若的定义域为区间
,求
的取值范围,使
在定义域
内是单调减函数。
某小型自来水厂的蓄水池中存有水400吨水,水厂每小时可向蓄水池中注入自来水60吨。若蓄水池向居民小区不间断地供水,且
小时内供水总量为
吨(
)。⑴供水开始几小时后,蓄水池中的水量最小?最小水量为多少吨?⑵若蓄水池中的水量少于80吨,就会出现供水紧张现象,试问在一天的24小时内,有多少小时会出现供水紧张现象?并说明理由。
已知函数.
(1)当时,求函数的最大值和最小值
;
(2)求实数的取值范围,使
在区间
上是单调函数,并指出相应的单调性.